Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2018 . Peer-reviewed
License: IEEE Open Access
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2018
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math> </inline-formula>-Convex Variable Subsets Family and Extremum Analysis for the OPF Problem

Authors: Liulin Yang; Naishan Hang; Zhi Wei;

Dual <inline-formula> <tex-math notation="LaTeX">${M}$ </tex-math> </inline-formula>-Convex Variable Subsets Family and Extremum Analysis for the OPF Problem

Abstract

The optimal power flow (OPF) model is a central optimization problem in power system network. In this paper, we propose a novel approach to solve the OPF problem that has a convex objective function and non-convex feasible domain due to the constraints. Based on the concept of abstract convex analysis, we construct the dual M-convex subsets family of original variables by using the variable separation method, followed by the analysis of the extremum according to the infimum base of the M-convex subsets. It is challenging to obtain an explicit mapping function among the separated variables due to the nonlinear equality constraints. We, therefore, use the theorem of implicit function and the differential function to do duality analysis on separated variables. Based on the min-max principle of the primal-dual problem of OPF, we derive the condition of the complementary factor which leads the Lagrange dual problem to maximum, and make the variable separation that results in a Minkowski-type dual M-convex subset. We then can obtain a local minimum using the principle of abstract convex optimization, which will be the global optimal solution under the Karush-Kuhn-Tucker conditions. We evaluate the proposed approach on several IEEE systems. The simulation results indicate that the approach is feasible and effective to deal with the non-convex OPF problem with a non-convex feasible domain.

Related Organizations
Keywords

Abstract convex analysis, dual M-convex, global optimization, KKT condition, TK1-9971, optimal power flow, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold