
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analyzing Energy-Efficiency of Two Scheduling Policies in Compute-Intensive Applications on Cloud

handle: 11343/216716
One of the key problems facing cloud applications is to reduce their energy consumption, which can increase the working lifetime of a machine, decrease the operation costs of cloud providers, and the environmental impact caused by power consumption. It is very important to design and evaluate an energy-efficient cloud. Recently, two open problems are raised in the literature: 1) what is the optimal solution (the lower bound) for the total energy consumption? and 2) what is the energy-efficiency for a scheduling algorithm? In this paper, we consider two major scheduling policies: 1) always power-on physical machines (PMs) once turning-on and 2) turning-off (hibernating) idle PMs, both with possible virtual machine migrations during evaluation. Focusing on compute-intensive applications on cloud, we propose analytical methods to settle down the two open problems. Our theoretical results are validated by experimental results in different scheduling scenarios and can be applied in cloud computing environments to help energy-efficient design.
- University of Melbourne Australia
- Chongqing University of Posts and Telecommunications China (People's Republic of)
- University of Electronic Science and Technology of China China (People's Republic of)
- Chongqing University of Posts and Telecommunications China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
TK1-9971, energy-aware resource scheduling, Cloud data centers, the lower bound, Electrical engineering. Electronics. Nuclear engineering, modified interval scheduling, energy efficiency
TK1-9971, energy-aware resource scheduling, Cloud data centers, the lower bound, Electrical engineering. Electronics. Nuclear engineering, modified interval scheduling, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
