
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
HARD-DE: Hierarchical ARchive Based Mutation Strategy With Depth Information of Evolution for the Enhancement of Differential Evolution on Numerical Optimization

Differential evolution is a famous and effective branch of evolutionary computation, which aims at tackling complex optimization problems. There are two aspects significantly affecting the overall performance of DE variants, one is trial vector generation strategy and the other is the control parameter adaptation scheme. Here in this paper, a new hierarchical archive-based trial vector generation strategy with depth information of evolution was proposed to get a better perception of landscapes of objective functions as well as to improve the candidate diversity of the trial vectors. Furthermore, novel adaptation schemes both for crossover rate Cr and for population size ps were also advanced in this paper, and consequently, an overall better optimization performance was obtained after these changes. The novel HARD-DE algorithm was verified under many benchmarks of the Congress on Evolutionary Computation (CEC) Competition test suites on real-parameter single-objective optimization as well as two benchmarks on real-world optimization from CEC2011 test suite, and the experiment results showed that the proposed HARD-DE algorithm was competitive with the other state-of-the-art DE variants.
- Fujian University of Technology China (People's Republic of)
- Fujian University of Technology China (People's Republic of)
numerical optimization, differential evolution, Depth information, Electrical engineering. Electronics. Nuclear engineering, hierarchical archive, TK1-9971
numerical optimization, differential evolution, Depth information, Electrical engineering. Electronics. Nuclear engineering, hierarchical archive, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).82 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
