
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Nonlinear, Bounded and Lipchitz Continuous Distributed Active Power Sharing Control Method for Islanded AC Microgrids

In this paper, a nonlinear, bounded, distributed secondary control (DSC) method is proposed to coordinate all the distributed generators (DGs) in islanded AC microgrids (MGs). This proposed consensus-based DSC strategy can not only guarantee the restoration control of frequency and voltage but also realize an accurate active power sharing control. Through introducing a nonlinear dynamic from beta cumulative distribution function (CDF), the convergence speed of DSC is accelerated, the asymptotical convergence of DSC is ensured, and the transient overshoot of DSC is diminished compared with traditional DSC. Moreover, by ensuring the Lipchitz continuity characteristic of the control algorithm, the common chattering phenomenon in non-Lipchitz DSC scheme is eliminated. The stability and performance of the proposed DSC are also analyzed in this paper. An islanded AC microgrid test system with four inverter-based DGs is built in MATLAB/SIMULINK to further validate the effeteness of the proposed DSC strategy.
- Chongqing University China (People's Republic of)
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Denmark
- Aalborg University Denmark
- Aalborg University Library (AUB) Denmark
Islanded microgrid, Lipchitz continuity, Nonlinear distributed secondary control, TK1-9971, Multi-agent system, Chattering phenomenon, chattering phenomenon, multi-agent system, islanded microgrid, Electrical engineering. Electronics. Nuclear engineering
Islanded microgrid, Lipchitz continuity, Nonlinear distributed secondary control, TK1-9971, Multi-agent system, Chattering phenomenon, chattering phenomenon, multi-agent system, islanded microgrid, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
