
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Distributed Optimal Energy Management for Microgrids in the Presence of Time-Varying Communication Delays

This paper investigates the issues of the distributed energy management problem (EMP) of Microgrids in the presence of communication delays. To address this issue, a consensus-based distributed algorithm is proposed to integrate the economic dispatch and demand response, which can optimally assign the energy among generation units and load units with the objective of maximizing the total social welfare of the power system. Different from existing energy management algorithms, a nonuniform time-varying delays model is considered and embedded into the design of our algorithm, such that each unit can achieve collaborative optimization without the requirement of fixed delays information, which has both theoretical merits and practical engineering value for the efficient and stable operation of Microgrids. Moreover, it is proved that the proposed algorithm can converge to the optimal solution under some sufficient conditions. Finally, the correctness and effectiveness of the proposed method are validated by several simulation results.
- University of Denver United States
- North University of China China (People's Republic of)
- University of Denver United States
communication delays, energy management, microgrids, Distributed optimization, TK1-9971, multi-agent system, Electrical engineering. Electronics. Nuclear engineering
communication delays, energy management, microgrids, Distributed optimization, TK1-9971, multi-agent system, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
