
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance of a Direct-Liquid-Cooled Motor in an Electric Bus Under Different Load Cycles

Performance of a Direct-Liquid-Cooled Motor in an Electric Bus Under Different Load Cycles
In this paper, a direct liquid cooling method is proposed for a radial-flux permanent-magnet motor. To demonstrate the feasibility of the cooling method, a test motor with a rated output of 205 kW was designed, constructed, and tested in an actual vehicle application, an electric city bus. The energy consumption tests were conducted by applying a heavy-duty chassis dynamometer capable of simulating the inertia, weight, and road loads that the buses are subjected to in the normal on-road operation. The electricity consumption on the real bus route of the Espoo line 11 in Finland was 0.61 kWh/km. The test results of the cooling solution show that the motor is capable of meeting the most challenging requirements of the load cycle even with a full payload. The highest winding temperature rise in the test driving cycles was only 26 °C, which proves the effectiveness of direct-liquid-cooled coils in a vehicle motor.
ta113, traction motors, ta213, direct liquid cooling, Electric machines, TK1-9971, rotating machines, Electrical engineering. Electronics. Nuclear engineering, SDG 7 - Affordable and Clean Energy, ta216, permanent magnet motors
ta113, traction motors, ta213, direct liquid cooling, Electric machines, TK1-9971, rotating machines, Electrical engineering. Electronics. Nuclear engineering, SDG 7 - Affordable and Clean Energy, ta216, permanent magnet motors
1 Research products, page 1 of 1
- 2016IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).14 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
