Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Southe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/00...
Other literature type . 2020
Data sources: Datacite
https://dx.doi.org/10.60692/1y...
Other literature type . 2020
Data sources: Datacite
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global Solar Radiation Estimation and Climatic Variability Analysis Using Extreme Learning Machine Based Predictive Model

التقدير العالمي للإشعاع الشمسي وتحليل التقلبات المناخية باستخدام نموذج تنبؤي قائم على آلة التعلم المتطرف
Authors: Hai Tao; Ahmad Sharafati; Mohammed Achite; Sinan Q. Salih; Ravinesh C. Deo; Nadhir Al‐Ansari; Zaher Mundher Yaseen‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬;

Global Solar Radiation Estimation and Climatic Variability Analysis Using Extreme Learning Machine Based Predictive Model

Abstract

L'utilisation durable du rayonnement solaire librement disponible comme source d'énergie renouvelable nécessite des modèles prédictifs précis pour évaluer quantitativement les potentiels énergétiques futurs. Dans cette recherche, une évaluation de la précision du modèle de machine d'apprentissage extrême (ELM) en tant que cadre rapide et efficace pour estimer le rayonnement solaire incident global (G) est entreprise. Des ensembles de données météorologiques quotidiennes adaptés à l'estimation de G appartiennent aux parties nord du bassin de Cheliff, dans le nord-ouest de l'Algérie, et sont utilisés pour construire le modèle d'estimation. Des fonctions de corrélation croisée sont appliquées entre les entrées et la variable cible (c'est-à-dire G) où plusieurs informations climatologiques sont utilisées comme prédicteurs pour l'estimation du niveau de surface G. Les entrées de modèle les plus significatives sont déterminées conformément aux corrélations croisées les plus élevées compte tenu de la covariance des prédicteurs avec l'ensemble de données G. Par la suite, sept modèles ELM avec des architectures neuronales uniques en termes de neurones d'entrée-sortie cachés sont développés avec des combinaisons d'entrée appropriées. Les performances d'estimation du modèle ELM prescrit au cours de la phase de test sont évaluées par rapport à des régressions linéaires multiples (MLR), à des modèles de moyenne mobile intégrée autorégressive (ARIMA) et à plusieurs études documentaires bien établies. Cela se fait conformément à plusieurs mesures de score statistiques. En termes quantitatifs, l'erreur quadratique moyenne (RMSE) et l'erreur absolue moyenne (MAE) sont considérablement plus faibles pour le modèle ELM optimal avec RMSE et MAE = 3,28 et 2,32 Wm -2 par rapport à 4,24 et 3,24 Wm -2 (MLR) et 8,33 et 5,37 Wm -2 (ARIMA).

La utilización sostenible de la radiación solar disponible gratuitamente como fuente de energía renovable requiere modelos predictivos precisos para evaluar cuantitativamente los potenciales energéticos futuros. En esta investigación, se realiza una evaluación de la precisión del modelo de máquina de aprendizaje extremo (ELM) como un marco rápido y eficiente para estimar la radiación solar incidente global (G). Los conjuntos de datos meteorológicos diarios adecuados para la estimación de G pertenecen a las partes septentrionales de la cuenca de Cheliff en el noroeste de Argelia, se utilizan para construir el modelo de estimación. Las funciones de correlación cruzada se aplican entre las entradas y la variable objetivo (es decir, G), donde se utilizan varias informaciones climatológicas como predictores para la estimación del nivel de superficie G. Las entradas del modelo más significativas se determinan de acuerdo con las correlaciones cruzadas más altas considerando la covarianza de los predictores con el conjunto de datos G. Posteriormente, se desarrollan siete modelos ELM con arquitecturas neuronales únicas en términos de sus neuronas de entrada-salida oculta con combinaciones de entrada apropiadas. El rendimiento de estimación del modelo ELM prescrito durante la fase de prueba se evalúa frente a regresiones lineales múltiples (MLR), modelos de media móvil integrada autorregresiva (ARIMA) y varios estudios de literatura bien establecidos. Esto se hace de acuerdo con varias métricas de puntuación estadística. En términos cuantitativos, el error cuadrático medio (RMSE) y el error absoluto medio (MAE) son dramáticamente más bajos para el modelo ELM óptimo con RMSE y MAE = 3.28 y 2.32 Wm -2 en comparación con 4.24 y 3.24 Wm -2 (MLR) y 8.33 y 5.37 Wm -2 (ARIMA).

Sustainable utilization of the freely available solar radiation as renewable energy source requires accurate predictive models to quantitatively evaluate future energy potentials. In this research, an evaluation of the preciseness of extreme learning machine (ELM) model as a fast and efficient framework for estimating global incident solar radiation (G) is undertaken. Daily meteorological datasets suitable for G estimation belongs to the northern parts of the Cheliff Basin in Northwest Algeria, is used to construct the estimation model. Cross-correlation functions are applied between the inputs and the target variable (i.e., G) where several climatological information's are used as the predictors for surface level G estimation. The most significant model inputs are determined in accordance with highest cross-correlations considering the covariance of the predictors with the G dataset. Subsequently, seven ELM models with unique neuronal architectures in terms of their input-hidden-output neurons are developed with appropriate input combinations. The prescribed ELM model's estimation performance over the testing phase is evaluated against multiple linear regressions (MLR), autoregressive integrated moving average (ARIMA) models and several well-established literature studies. This is done in accordance with several statistical score metrics. In quantitative terms, the root mean square error (RMSE) and mean absolute error (MAE) are dramatically lower for the optimal ELM model with RMSE and MAE = 3.28 and 2.32 Wm -2 compared to 4.24 and 3.24 Wm -2 (MLR) and 8.33 and 5.37 Wm -2 (ARIMA).

يتطلب الاستخدام المستدام للإشعاع الشمسي المتاح مجانًا كمصدر للطاقة المتجددة نماذج تنبؤية دقيقة للتقييم الكمي لإمكانات الطاقة المستقبلية. في هذا البحث، يتم إجراء تقييم لدقة نموذج آلة التعلم المتطرفة (ELM) كإطار سريع وفعال لتقدير الإشعاع الشمسي الساقط العالمي (G). مجموعات بيانات الأرصاد الجوية اليومية المناسبة لتقدير G تنتمي إلى الأجزاء الشمالية من حوض Cheliff في شمال غرب الجزائر، ويستخدم لبناء نموذج التقدير. يتم تطبيق وظائف الارتباط المتبادل بين المدخلات والمتغير المستهدف (أي G) حيث يتم استخدام العديد من المعلومات المناخية كمؤشرات لتقدير المستوى السطحي G. يتم تحديد مدخلات النموذج الأكثر أهمية وفقًا لأعلى الارتباطات المتبادلة مع الأخذ في الاعتبار التباين المشترك للمتنبئين مع مجموعة البيانات G. في وقت لاحق، يتم تطوير سبعة نماذج ELM مع بنى عصبية فريدة من نوعها من حيث الخلايا العصبية المخفية للمدخلات والمخرجات مع تركيبات المدخلات المناسبة. يتم تقييم أداء تقدير نموذج علم المحدد خلال مرحلة الاختبار مقابل الانحدارات الخطية المتعددة (MLR)، ونماذج المتوسط المتحرك المتكامل الانحداري الذاتي (ARIMA) والعديد من الدراسات الأدبية الراسخة. ويتم ذلك وفقًا للعديد من مقاييس الدرجات الإحصائية. من الناحية الكمية، فإن متوسط خطأ الجذر التربيعي (RMSE) ومتوسط الخطأ المطلق (MAE) أقل بشكل كبير لنموذج ELM الأمثل مع RMSE و MAE = 3.28 و 2.32 Wm -2 مقارنة بـ 4.24 و 3.24 Wm -2 (MLR) و 8.33 و 5.37 Wm -2 (ARIMA).

Countries
Australia, Sweden
Keywords

Artificial neural network, multivariate modeling, Artificial intelligence, Time series, Extreme learning machine, Parameter Estimation, 310, Autoregressive model, extreme learning machine, multivariate, solar energy mapping, Artificial Intelligence, Machine learning, FOS: Mathematics, Machine Learning Methods for Solar Radiation Forecasting, Geoteknik och teknisk geologi, energy feasibility studies, Theory and Applications of Extreme Learning Machines, Ensemble Learning, Autoregressive integrated moving average, Energy feasibility studies, Energy, Covariance, Renewable Energy, Sustainability and the Environment, Statistics, Cross-validation, Photovoltaic Maximum Power Point Tracking Techniques, Geotechnical Engineering and Engineering Geology, Computer science, TK1-9971, Computer Science, Physical Sciences, Mean squared error, Solar Radiation, Electrical engineering. Electronics. Nuclear engineering, Extreme Learning Machine, solar energy estimation, Mathematics, Forecasting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 1%
Top 10%
Top 1%
Green
gold
Related to Research communities
Energy Research