
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Deep SCNN-Based Real-Time Object Detection for Self-Driving Vehicles Using LiDAR Temporal Data

Real-time accurate detection of three-dimensional (3D) objects is a fundamental necessity for self-driving vehicles. Most existing computer vision approaches are based on convolutional neural networks (CNNs). Although the CNN-based approaches can achieve high detection accuracy, their high energy consumption is a severe drawback. To resolve this problem, novel energy efficient approaches should be explored. Spiking neural network (SNN) is a promising candidate because it has orders-of-magnitude lower energy consumption than CNN. Unfortunately, the studying of SNN has been limited in small networks only. The application of SNN for large 3D object detection networks has remain largely open. In this paper, we integrate spiking convolutional neural network (SCNN) with temporal coding into the YOLOv2 architecture for real-time object detection. To take the advantage of spiking signals, we develop a novel data preprocessing layer that translates 3D point-cloud data into spike time data. We propose an analog circuit to implement the non-leaky integrate and fire neuron used in our SCNN, from which the energy consumption of each spike is estimated. Moreover, we present a method to calculate the network sparsity and the energy consumption of the overall network. Extensive experiments have been conducted based on the KITTI dataset, which show that the proposed network can reach competitive detection accuracy as existing approaches, yet with much lower average energy consumption. If implemented in dedicated hardware, our network could have a mean sparsity of 56.24% and extremely low total energy consumption of 0.247mJ only. Implemented in NVIDIA GTX 1080i GPU, we can achieve 35.7 fps frame rate, high enough for real-time object detection.
- State University of New York at Potsdam United States
- Binghamton University United States
- University of Chicago United States
- Harbin Institute of Technology China (People's Republic of)
- State University of New York at Potsdam United States
FOS: Computer and information sciences, LiDAR temporal data, real-time object detection, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, TK1-9971, Spiking convolutional neural network, energy consumption, Electrical engineering. Electronics. Nuclear engineering
FOS: Computer and information sciences, LiDAR temporal data, real-time object detection, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, TK1-9971, Spiking convolutional neural network, energy consumption, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).34 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
