
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Versatile Network Codes: Energy Consumption in Heterogeneous IoT Devices

In an Internet of Things (IoT), the number of interconnected devices is huge and has been increasing drastically. Their generated data requires powerful aggregated computing resources and consumes enormous energy for processing and transmission. Having said that, most IoT devices are very limited and heterogeneous in computing capabilities, causing a big challenge for designing a commonly used interconnect that is both reliable and energy-efficient. Random Linear Network Coding (RLNC) schemes have proven its capability both theoretically and in practical deployment not only to increase throughput and reliability but also to reduce latency and energy consumption. However, it is unclear how different variations of RLNC, in particular, Fulcrum codes aimed for heterogeneous devices perform in heterogeneous IoT settings. In this paper, we conduct a measurement campaign, allowing for a fair comparison among the state of the art RLNC families, with regard to energy consumption, decoding probability, and goodput. The study provides insights and guidelines for applying RLNC schemes to data transmission in heterogeneous IoT networks.
the IoT devices, TK1-9971, fulcrum code, Electrical engineering. Electronics. Nuclear engineering, heterogeneity, versatility, Network code, energy efficiency
the IoT devices, TK1-9971, fulcrum code, Electrical engineering. Electronics. Nuclear engineering, heterogeneity, versatility, Network code, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
