
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
System-Level Investigation of Multi-MW Direct-Drive Wind Power PM Vernier Generators

System-Level Investigation of Multi-MW Direct-Drive Wind Power PM Vernier Generators
Surface mounted permanent magnet Vernier (SPM-V) machines are known for their high torque density but relatively poor power factor compared to conventional SPM machines. The high torque density feature of the SPM-V machines is desirable for direct-drive offshore wind power applications as it leads to reduced generator size, mass and cost. However, their poor power factor can negatively affect the converter cost and efficiency. This paper compares the system-level performance, including generator active and structural components and converter, between the SPM-V and the conventional SPM generator systems. Four different power ratings, i.e. 0.5MW, 3MW, 5MW and 10MW, have been considered to study the trend of system-level performance with increasing power rating. The study shows that the SPM-V generators can be lighter and cheaper than their conventional SPM counterparts. However, after the consideration of converter cost and efficiency, the conventional SPM generator exhibited slightly better overall performance. Nonetheless, with the development of novel Vernier topologies and reduction in converter costs in the future due to emerging technologies, the Vernier generators can still be competitive for direct-drive offshore wind power applications.
- University of Sheffield United Kingdom
- Siemens (Germany) Germany
- Siemens (Germany) Germany
Vernier machine, power factor, TK1-9971, system-level performance, Electrical engineering. Electronics. Nuclear engineering, Direct-drive wind generator
Vernier machine, power factor, TK1-9971, system-level performance, Electrical engineering. Electronics. Nuclear engineering, Direct-drive wind generator
1 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
