Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

A Novel Method of Developing Driving Cycle for Electric Vehicles to Evaluate the Private Driving Habits

Authors: Fei Chen; orcid Sida Zhou;
Sida Zhou
ORCID
Harvested from ORCID Public Data File

Sida Zhou in OpenAIRE
Yang Hua; Xinan Zhou; orcid Xinhua Liu;
Xinhua Liu
ORCID
Harvested from ORCID Public Data File

Xinhua Liu in OpenAIRE
Ningning Wu; Jiapeng Xiu; +1 Authors

A Novel Method of Developing Driving Cycle for Electric Vehicles to Evaluate the Private Driving Habits

Abstract

As one of important implications on electric vehicles, driving cycles are recognized as essential components for evaluating the comprehensive performances and they have drawn much attention for research. Currently, driving cycles are constructed specifiedly in international standards based on local traffic conditions. However, without consideration of the private driving habits, unproper cycles lead to the imprecision on predicting the remaining useful life or estimating states. Herein, a novel methodology based on Markov chain and Monte Carlo method is developed to extract the personal driving characteristics as the elements of divided kinematic fragments. Principal component analysis is adopted to address the high-dimensional parameter vector, and cluster is used to classify the kinematic fragments. The statistics analysis demonstrates that the processed database exhibits great consistency with our developed driving cycle compared against original database, where temperature, state-of-charge and consistency are utilized to describe the personal patterns. Moreover, by using the operational driving data, the developed driving cycle is comparable against other driving cycles, which exhibits good performance. Overall, the presented driving cycle of electric vehicle can be considered as an effective way in evaluating the private driving habits, predicting the battery states and other related applications. The method may be promoted for future better energy management on electric vehicles owing to the promotion of connected and autonomous vehicles.

Related Organizations
Keywords

private driving habits, Electric vehicles, driving cycle, TK1-9971, Electrical engineering. Electronics. Nuclear engineering, Monte Carlo

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold