
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Review on Fuzzy and Neural Prediction Interval Modelling for Nonlinear Dynamical Systems

Les incertitudes existantes pendant le fonctionnement des processus pourraient fortement affecter la performance des systèmes de prévision, des stratégies de contrôle et des systèmes de détection de défauts lorsqu'ils ne sont pas pris en compte dans la conception. Pour cette raison, l'étude de la quantification de l'incertitude a attiré plus d'attention parmi les chercheurs au cours des dernières décennies. De ce domaine d'étude, les intervalles de prédiction apparaissent comme l'une des techniques les plus utilisées dans la littérature pour représenter l'effet de l'incertitude sur le comportement futur du processus. Ainsi, les chercheurs se sont concentrés sur le développement d'intervalles de prédiction basés sur l'utilisation de systèmes flous et de réseaux de neurones, grâce à leur utilité pour représenter un large éventail de processus en tant qu'approximateurs universels. Dans ce travail, une revue de l'état de l'art des méthodologies de modélisation des intervalles de prédiction basées sur des systèmes flous et des réseaux de neurones est présentée. Les principales caractéristiques de chaque méthode de construction d'intervalles de prédiction sont présentées et certaines recommandations sont données pour sélectionner la méthode la plus appropriée pour des applications spécifiques. Pour illustrer les avantages de ces méthodologies, une analyse comparative de méthodes sélectionnées d'intervalles de prédiction est présentée, en utilisant une série de référence et des données réelles de la production d'énergie solaire d'un micro-réseau.
Las incertidumbres existentes durante la operación de los procesos podrían afectar fuertemente el desempeño de los sistemas de pronóstico, estrategias de control y sistemas de detección de fallas cuando no se consideran en el diseño. Debido a eso, el estudio de la cuantificación de la incertidumbre ha ganado más atención entre los investigadores durante las últimas décadas. Desde este campo de estudio, los intervalos de predicción surgen como una de las técnicas más utilizadas en la literatura para representar el efecto de la incertidumbre sobre el comportamiento futuro del proceso. Así, los investigadores se han centrado en desarrollar intervalos de predicción basados en el uso de sistemas difusos y redes neuronales, gracias a su utilidad para representar una amplia gama de procesos como aproximadores universales. En este trabajo se presenta una revisión del estado del arte de las metodologías para la modelización de intervalos de predicción basadas en sistemas fuzzy y redes neuronales. Se presentan las principales características de cada método para la construcción de intervalos de predicción y se dan algunas recomendaciones para seleccionar el método más apropiado para aplicaciones específicas. Para ilustrar las ventajas de estas metodologías, se presenta un análisis comparativo de los métodos seleccionados de intervalos de predicción, utilizando una serie de referencia y datos reales de la generación de energía solar de una microrred.
The existing uncertainties during the operation of processes could strongly affect the performance of forecasting systems, control strategies and fault detection systems when they are not considered in the design. Because of that, the study of uncertainty quantification has gained more attention among the researchers during past decades. From this field of study, the prediction intervals arise as one of the techniques most used in literature to represent the effect of uncertainty over the future process behavior. Thus, researchers have focused on developing prediction intervals based on the use of fuzzy systems and neural networks, thanks to their usefulness for represent a wide range of processes as universal approximators. In this work, a review of the state-of-the-art of methodologies for prediction interval modelling based on fuzzy systems and neural networks is presented. The main characteristics of each method for prediction interval construction are presented and some recommendations are given for selecting the most appropriate method for specific applications. To illustrate the advantages of these methodologies, a comparative analysis of selected methods of prediction intervals is presented, using a benchmark series and real data from solar power generation of a microgrid.
يمكن أن تؤثر الشكوك الحالية أثناء تشغيل العمليات بشدة على أداء أنظمة التنبؤ واستراتيجيات التحكم وأنظمة الكشف عن الأخطاء عندما لا يتم أخذها في الاعتبار في التصميم. وبسبب ذلك، اكتسبت دراسة القياس الكمي لعدم اليقين المزيد من الاهتمام بين الباحثين خلال العقود الماضية. من هذا المجال من الدراسة، تنشأ فترات التنبؤ كواحدة من التقنيات الأكثر استخدامًا في الأدبيات لتمثيل تأثير عدم اليقين على سلوك العملية في المستقبل. وبالتالي، ركز الباحثون على تطوير فترات التنبؤ بناءً على استخدام الأنظمة الغامضة والشبكات العصبية، وذلك بفضل فائدتها في تمثيل مجموعة واسعة من العمليات كمقربات عالمية. في هذا العمل، يتم تقديم مراجعة لأحدث منهجيات نمذجة الفواصل الزمنية للتنبؤ بناءً على الأنظمة الغامضة والشبكات العصبية. يتم عرض الخصائص الرئيسية لكل طريقة لبناء الفاصل الزمني للتنبؤ ويتم تقديم بعض التوصيات لاختيار الطريقة الأنسب لتطبيقات محددة. لتوضيح مزايا هذه المنهجيات، يتم تقديم تحليل مقارن لطرق مختارة من فترات التنبؤ، باستخدام سلسلة مرجعية وبيانات حقيقية من توليد الطاقة الشمسية لشبكة صغيرة.
- Universidad de San Buenaventura, Bogota Colombia
- University of O'Higgins Chile
- Universidad de San Buenaventura, Bogota Colombia
- Complex Engineering System Institute Chile
- Universidad de Los Andes Colombia
Artificial intelligence, Interval (graph theory), Microgrid, Fuzzy interval, Adaptive neuro fuzzy inference system, Electric power system, Predictive models, Engineering, Range (aeronautics), Interval Type-2 Fuzzy Logic, Probability density function, Fuzzy Rule-Based Systems, Neuro-Fuzzy Methods, uncertainty, Fuzzy Logic Systems, Artificial neural networks, Geography, Physics, Uncertainty, Data models, Power (physics), Aerospace engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, Prediction intervals, Geodesy, Artificial neural network, Time series, Electricity Price and Load Forecasting Methods, Control (management), Quantum mechanics, Neural network intervals, Artificial Intelligence, Field (mathematics), Machine learning, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, fuzzy interval, Type-2 Fuzzy Logic Systems and Applications, Electrical and Electronic Engineering, Data mining, Pure mathematics, Load Forecasting, Neural Network Fundamentals and Applications, neural network intervals, Computer science, TK1-9971, Process (computing), Fuzzy logic, Operating system, Fuzzy control system, Prediction interval, Combinatorics, Computer Science, Nonlinear system, Nonlinear dynamical systems, Benchmark (surveying), Mathematics
Artificial intelligence, Interval (graph theory), Microgrid, Fuzzy interval, Adaptive neuro fuzzy inference system, Electric power system, Predictive models, Engineering, Range (aeronautics), Interval Type-2 Fuzzy Logic, Probability density function, Fuzzy Rule-Based Systems, Neuro-Fuzzy Methods, uncertainty, Fuzzy Logic Systems, Artificial neural networks, Geography, Physics, Uncertainty, Data models, Power (physics), Aerospace engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, Prediction intervals, Geodesy, Artificial neural network, Time series, Electricity Price and Load Forecasting Methods, Control (management), Quantum mechanics, Neural network intervals, Artificial Intelligence, Field (mathematics), Machine learning, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Mathematics, fuzzy interval, Type-2 Fuzzy Logic Systems and Applications, Electrical and Electronic Engineering, Data mining, Pure mathematics, Load Forecasting, Neural Network Fundamentals and Applications, neural network intervals, Computer science, TK1-9971, Process (computing), Fuzzy logic, Operating system, Fuzzy control system, Prediction interval, Combinatorics, Computer Science, Nonlinear system, Nonlinear dynamical systems, Benchmark (surveying), Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).29 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
