Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Short-Term Electric Load Forecasting of Integrated Energy System Considering Nonlinear Synergy Between Different Loads

Authors: Biyun Chen; Yifeng Wang;

Short-Term Electric Load Forecasting of Integrated Energy System Considering Nonlinear Synergy Between Different Loads

Abstract

As an efficient form of energy utilization, an integrated energy system integrates oil, natural gas, coal, and other energy sources and converts them into electric, cooling, and heating for users through energy conversion devices. In this process, integrated energy service providers need to make energy conversion decisions based on users’ demand information feedback. Therefore, there is uncertainty and coupling between the electric cooling and heating loads, making it difficult to forecast the loads accurately. Firstly, this paper analyzes the integrated energy system’s energy consumption characteristics and the interaction mechanism between the supply and demand sides, which fundamentally explains the coupling relationship between different loads of the integrated energy system. Secondly, REC, DEC, REH, and DEH are constructed from electric cooling and heating loads. The relationship between electric load and cooling and heating load is analyzed by a scatter distribution diagram and maximum information coefficient method. The nonlinear correlation between electric load and cooling and heating loads is proved. Based on this, the integrated energy system’s synergetic electric load forecasting formula reflecting the nonlinear synergistic effect between loads is proposed. Finally, based on stacking ensemble learning, an integrated energy system electric load forecasting model considering the nonlinear synergy between loads is established by integrating BP neural network, support vector regression, random forest, and gradient boosting decision tree. Through the experimental analysis of the Arizona State University Tempe campus’s integrated energy system project, it is found that the effect of the synergistic quadratic forecasting is better than that of the primary forecasting. Besides, the MAPE of the quadratic synergistic forecasting formula is lower than that of the other two forms, indicating that the proposed synergistic electric load forecasting formula considering the nonlinear synergy between loads can improve the accuracy of electric load forecasting of the integrated energy system.

Related Organizations
Keywords

Energy consumption characteristics, TK1-9971, integrated energy system, synergetic forecasting, Electrical engineering. Electronics. Nuclear engineering, stacking ensemble learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%
gold