

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Model-Free Non-Invasive Health Assessment for Battery Energy Storage Assets

With the increasing application of battery energy storage in buildings, networks and transportation, an emerging challenge to overall system resilience is in understanding the constituent asset health. Current battery energy storage considerations focus on adhering to the technical specification of the service in the short term, rather than the long-term consequences to battery health. However, accurately determining battery health generally requires invasive measurements or computationally expensive physics-based models which do not scale up to a fleet of assets cost-effectively. This paper alternatively proposes capturing cumulative maloperation through a physics model-free proxy for cell health, articulated via the strong influence misuse has on the internal chemical state. A Hidden Markov Chain approach is used to automatically recognize violations of chemistry specific usage preferences from sequences of observed charging actions. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios.
- University of Strathclyde United Kingdom
Electrical engineering. Electronics Nuclear engineering, TK, input-output hidden Markov model, Battery energy storage, storage longevity, TK1-9971, battery limitations, Electrical engineering. Electronics. Nuclear engineering, secondary batteries
Electrical engineering. Electronics Nuclear engineering, TK, input-output hidden Markov model, Battery energy storage, storage longevity, TK1-9971, battery limitations, Electrical engineering. Electronics. Nuclear engineering, secondary batteries
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 3 download downloads 59 - 3views59downloads
Data source Views Downloads Strathprints 3 59


