
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Modified Manta Ray Foraging Optimizer for Planning Inverter-Based Photovoltaic With Battery Energy Storage System and Wind Turbine in Distribution Networks

A Modified Manta Ray Foraging Optimizer for Planning Inverter-Based Photovoltaic With Battery Energy Storage System and Wind Turbine in Distribution Networks
It is widely accepted that the integration of natural sources in distribution networks is becoming more attractive as they are sustainable and nonpolluting. This paper firstly proposes a modified Manta Ray Foraging Optimizer (MMRFO) to enhance the characteristic of MRFO technique. The modified MRFO technique is based on inserting the Simulated Annealing technique into the original MRFO to enhance the exploitation phase which is responsible for finding the promising region in the search area. Secondly, the developed technique is utilized for determining the best sizes and locations of multiple wind turbine (WT) and photovoltaic (PV) units in Radial Distribution System (RDS). The total system loss is taken as single-objective function to be minimized, considering the probabilistic nature of PV and WT output generation with variable load demand. Reactive loss sensitivity factor (QLSF) is utilized for obtaining the candidate locations up to fifty percent of total system buses with the aim of reducing the search space. Battery Energy Storage System (BESS) is used with PV to change it into a dispatchable supply. The changes in system performance by optimally integrating PV and WT alone or together are comprehensively studied. The proposed solution approach is applied for solving the standard IEEE 69 bus RDS. The obtained results demonstrate that installing PV and WT simultaneously achieves superior results than installing PV alone and WT alone in RDS. Further, simultaneous integration of WT and PV with BESS gives better results than simultaneous integration of WT and PV without BESS in RDS. The simulation results prove that the total system losses can be reduced by enabling the reactive power capability of PV inverters. The convergence characteristic shows that the modified MRFO gives the best solutions compared with the original MRFO algorithm.
- South Valley University Egypt
- South Valley University Egypt
- Aswan University Egypt
- University of Chile Chile
Optimization, Load modeling, Reactive power, Uncertainty, Battery energy storage, Inverters, TK1-9971, Distribution network, photovoltaic, Batteries, Wind turbines, Electrical engineering. Electronics. Nuclear engineering, uncertainty, Photovoltaic, distribution network, Manta ray foraging optimization, optimization, Power generation
Optimization, Load modeling, Reactive power, Uncertainty, Battery energy storage, Inverters, TK1-9971, Distribution network, photovoltaic, Batteries, Wind turbines, Electrical engineering. Electronics. Nuclear engineering, uncertainty, Photovoltaic, distribution network, Manta ray foraging optimization, optimization, Power generation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
