Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/9r...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/rn...
Other literature type . 2021
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Short-Term Forecasting for the Electricity Spot Prices With Extreme Values Treatment

التنبؤ قصير الأجل لأسعار الكهرباء الفورية مع معالجة القيم القصوى
Authors: Ismail Shah; Sher Akbar; Tanzila Saba; Sajid Ali; Amjad Rehman;

Short-Term Forecasting for the Electricity Spot Prices With Extreme Values Treatment

Abstract

De nos jours, la modélisation et la prévision des prix au comptant de l'électricité sont difficiles en raison de leurs caractéristiques spécifiques, notamment les saisonnalités multiples, les effets de calendrier et les valeurs extrêmes (également appelées sauts, pics ou valeurs aberrantes). Cette étude vise à fournir une analyse complète de la prévision des prix de l'électricité en comparant plusieurs techniques de filtrage des valeurs aberrantes suivies de divers cadres de modélisation. À cette fin, les valeurs extrêmes sont d'abord traitées avec cinq techniques de filtrage différentes, puis remplacées par quatre approches différentes de remplacement des valeurs aberrantes. Ensuite, la série sans pointes est divisée en composantes déterministes et stochastiques. La composante déterministe comprend la tendance à long terme, les saisonnalités annuelles et hebdomadaires et les jours fériés et est estimée par des approches paramétriques et non paramétriques. D'autre part, la composante stochastique tient compte de la dynamique à court terme des séries chronologiques de prix et est modélisée à l'aide de différents modèles univariés et multivariés. Les résultats prévisionnels hors échantillon d'un jour pour la bourse italienne de l'électricité (IPEX), obtenus pour une année entière, suggèrent que le préfiltrage des valeurs aberrantes donne un gain de précision élevé. De plus, la modélisation multivariée pour le composant stochastique surpasse les modèles univariés.

Hoy en día, modelar y pronosticar los precios al contado de la electricidad es un desafío debido a sus características específicas, que incluyen múltiples estacionalidades, efectos de calendario y valores extremos (también conocidos como saltos, picos o valores atípicos). Este estudio tiene como objetivo proporcionar un análisis exhaustivo de la previsión de precios de la electricidad mediante la comparación de varias técnicas de filtrado de valores atípicos seguidas por varios marcos de modelado. Con este fin, los valores extremos se tratan primero con cinco técnicas de filtrado diferentes y luego se reemplazan por cuatro enfoques de reemplazo de valores atípicos diferentes. A continuación, la serie sin picos se divide en componentes deterministas y estocásticos. El componente determinista incluye la tendencia a largo plazo, las estacionalidades anuales y semanales y los días festivos y se estima a través de enfoques paramétricos y no paramétricos. Por otro lado, el componente estocástico representa la dinámica a corto plazo de la serie temporal de precios y se modela utilizando diferentes modelos univariados y multivariados. Los resultados del pronóstico fuera de la muestra de un día antes para el intercambio de energía italiano (IPEX), obtenidos durante todo un año, sugieren que el prefiltrado de valores atípicos da una alta ganancia de precisión. Además, el modelado multivariante para el componente estocástico supera a los modelos univariantes.

Nowadays, modeling and forecasting electricity spot prices are challenging due to their specific features, including multiple seasonalities, calendar effects, and extreme values (also known as jumps, spikes, or outliers). This study aims to provide a comprehensive analysis of electricity price forecasting by comparing several outlier filtering techniques followed by various modeling frameworks. To this end, extreme values are first treated with five different filtering techniques and are then replaced by four different outlier replacement approaches. Next, the spikes-free series is divided into deterministic and stochastic components. The deterministic component includes long-term trend, yearly and weekly seasonalities, and bank holidays and is estimated through parametric and nonparametric approaches. On the other hand, the stochastic component accounts for the short-run dynamics of the price time series and is modeled using different univariate and multivariate models. The one-day-ahead out-of-sample forecast results for the Italian Power Exchange (IPEX), obtained for a whole year, suggest that the outliers pre-filtering give a high accuracy gain. In addition, multivariate modeling for the stochastic component outperforms univariate models.

في الوقت الحاضر، تمثل نمذجة أسعار الكهرباء الفورية والتنبؤ بها تحديًا بسبب ميزاتها المحددة، بما في ذلك الموسمية المتعددة، وتأثيرات التقويم، والقيم المتطرفة (المعروفة أيضًا باسم القفزات أو الارتفاعات أو القيم المتطرفة). تهدف هذه الدراسة إلى تقديم تحليل شامل لتوقعات أسعار الكهرباء من خلال مقارنة العديد من تقنيات الترشيح المتطرفة التي تتبعها أطر النمذجة المختلفة. ولتحقيق هذه الغاية، يتم التعامل مع القيم المتطرفة أولاً بخمس تقنيات ترشيح مختلفة ثم يتم استبدالها بأربعة أساليب استبدال مختلفة. بعد ذلك، تنقسم السلسلة الخالية من المسامير إلى مكونات حتمية وعشوائية. يشمل المكون الحتمي الاتجاه طويل الأجل، والمواسم السنوية والأسبوعية، والعطلات الرسمية، ويتم تقديره من خلال النهج البارامترية وغير البارامترية. من ناحية أخرى، يمثل المكون العشوائي الديناميكيات قصيرة المدى للسلاسل الزمنية للسعر ويتم نمذجته باستخدام نماذج مختلفة أحادية ومتعددة المتغيرات. تشير نتائج التوقعات قبل يوم واحد خارج العينة لبورصة الطاقة الإيطالية (IPEX)، التي تم الحصول عليها لمدة عام كامل، إلى أن التصفية المسبقة للقيم المتطرفة تعطي مكاسب عالية الدقة. بالإضافة إلى ذلك، تتفوق النمذجة متعددة المتغيرات للمكون العشوائي على النماذج أحادية المتغير.

Related Organizations
Keywords

Artificial intelligence, Economics, Component (thermodynamics), Social Sciences, Anomaly detection, Term (time), Engineering, Electricity, Electricity price forecasting, IPEX, Series (stratigraphy), extreme values treatment, Physics, Statistics, Electricity Market Operation and Optimization, Multivariate statistics, Economics, Econometrics and Finance, Outlier, Physical Sciences, Wind Power Forecasting, Thermodynamics, Electrical engineering. Electronics. Nuclear engineering, Probabilistic Forecasting, Economics and Econometrics, Spot contract, Time series, Electricity Price and Load Forecasting Methods, forecasting, Quantum mechanics, FOS: Economics and business, Electricity market, Machine learning, FOS: Electrical engineering, electronic engineering, information engineering, Univariate, FOS: Mathematics, Econometrics, Electrical and Electronic Engineering, Data mining, Biology, Electricity Price Forecasting, Nonparametric statistics, parametric and nonparametric estimation, Load Forecasting, Paleontology, Computer science, TK1-9971, Electricity prices, Futures contract, Impact of Oil Price Shocks on Economy, Electrical engineering, Short-Term Forecasting, Mathematics, Finance

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Top 10%
Top 10%
gold