Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems

Authors: Ali Dokht Shakibjoo; Mohammad Moradzadeh; Sami Ud Din; Ardashir Mohammadzadeh; Amir H. Mosavi; Lieven Vandevelde;

Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems

Abstract

The objective of this study is minimizing the frequency deviation due to the load variations and fluctuations of renewable energy resources. In this paper, a new type-2 fuzzy control (T2FLC) approach is presented for load frequency control (LFC) in power systems with multi-areas, demand response (DR), battery energy storage system (BESS), and wind farms. BESS is used to reduce the frequency deviations caused by wind energy, and DR is utilized to increase network stability due to fast load changes. The suggested T2FLC is online tuned based on the extended Kalman filter to improve the LFC accuracy in coordination of DR, BESS, and wind farms. The system dynamics are unknown, and the system Jacobian is extracted by online modeling with a simple multilayer perceptron neural network (MLP-NN). The designed LFC is evaluated through simulating on 10-machine New England 39-bus test system (NETS-39b) in four scenarios. Simulation results verifies the desired performance, indicating its superiority compared to a classical PI controllers, and type-1 fuzzy logic controllers (FLCs). The mean of improvement percentage is about 20%.

Keywords

Artificial intelligence, Renewable energy, Technology and Engineering, extended Kalman filter, electrical power systems, AGC, type-2 adaptive neuro-fuzzy, Type-2 adaptive neuro-fuzzy, frequency control, Machine learning, Wind farms, Training, Wind energy, Demand response, Load modeling, STABILITY, Généralités, CONTROL STRATEGY, artificial intelligence, Power system stability, Extended Kalman filter, TK1-9971, Fuzzy logic, machine learning, demand response, Frequency control, Electrical engineering. Electronics. Nuclear engineering, ENERGY-STORAGE

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 1%
Green
gold