Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
VBN
Article . 2022
Data sources: VBN
MacSphere
Article . 2025
Data sources: MacSphere
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Shrinking Horizon Model Predictive Controller for Daily Scheduling of Home Energy Management Systems

Authors: Ali Esmaeel Nezhad; Abolfazl Rahimnejad; Pedro H. J. Nardelli; Stephen Andrew Gadsden; Subham Sahoo; Farideh Ghanavati;

A Shrinking Horizon Model Predictive Controller for Daily Scheduling of Home Energy Management Systems

Abstract

In this paper, the model predictive control (MPC) strategy is utilized in smart homes to handle the optimal operation of controllable electrical loads of residential end-users. In the proposed model, active consumers reduce their daily electricity bills by installing photovoltaic (PV) panels and battery electrical energy storage (BEES) units. The optimal control strategy will be determined by the home energy management system (HEMS), benefiting from the meteorological and electricity market data stream during the operation horizon. In this case, the optimal scheduling of home appliances is managed using the shrinking horizon MPC (SH-MPC) and the main objective is to minimize the electricity cost. To this end, the HEMS is augmented by the SH-MPC, while maintaining the desired operation time slots of controllable loads for each day. The HEMS is cast as a standard mixed-integer linear programming (MILP) model that is incorporated into the SH-MPC framework. The functionality of the proposed method is investigated under different scenarios applied to a benchmark system while both time-of-use (TOU) and real-time pricing (RTP) mechanisms have been adopted in this study. The problem is solved using six case studies. In this regard, the impact of the TOU tariff was assessed in Scenarios 1–3 while Scenarios 4–6 evaluate the problem with the RTP mechanism. By adopting the TOU tariff and without any load shifting program, the cost is $\$ $ 1.2274 while by using the load shifting program without the PV and BEES system, the cost would reduce to $\$ $ 0.8709. Furthermore, by using the SH-MPC model, PV system and the BEES system, the cost would reduce to $\$ $ -0.282713 with the TOU tariff. This issue shows that the prosumer would be able to make a profit. By adopting the RTP tariff and without any load shifting program, the cost would be $\$ $ 1.22093 without any PV and BEES systems. By using the SH-MPC model, the cost would reduce to $\$ $ 1.08383. Besides, by adopting the SH-MPC, and the PV and BEES systems, the cost would reduce to $\$ $ 0.05251 with the RTP tariff, showing the significant role of load shifting programs, local power generation, and storage systems.

Countries
Finland, Denmark, Canada
Keywords

4007 Control Engineering, Mechatronics and Robotics, Demand response programs, electrical energy storage, 4010 Engineering Practice and Education, TK1-9971, smart homes, shrinking horizon model predictive control, home energy management system, 7 Affordable and Clean Energy, Electrical engineering. Electronics. Nuclear engineering, 4008 Electrical Engineering, 40 Engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
Green
gold