Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hierarchical Distribution Network Topology Formulation and Dimensionality Reduction Using Homeomorphism Transformation

Authors: Jinming Chen; Wei Jiang; Zhiqi Xu; Ye Chen; Hao Jiao; Minghua Wang; Yubo Yuan; +1 Authors

Hierarchical Distribution Network Topology Formulation and Dimensionality Reduction Using Homeomorphism Transformation

Abstract

The scales of the power distribution networks in real-world power grids expand quickly while the network structures are becoming more and more complex. The power grid companies analyze the power distribution networks in different business scenarios with different topology models. In this work, we propose a hierarchical graph model to describe the medium-voltage distribution network (which is a typical power distribution network in power grids) based on homeomorphic transformation. The hierarchical graph model preserves the basic network topology described by the traditional Common Information Model (CIM). Firstly, the nodes in the distribution network topology are classified according to graph theory. Secondly, three typical business scenarios of distribution network topology analysis are summarized, and the original model is simplified by progressive dimensionality reduction method to meet the analysis requirements of different scenarios, the simplified method consists of three abstract levels: critical path, core path and minimal path, and can effectively reduce the space complexity of the model while maintaining the topological properties. Thirdly, a multi-level distribution network topology construction and mapping method based on the graph database is proposed. It is used to realize the rapid conversion and traceability between different levels of topology. Finally, a practical distribution network in a county is used as an example to verify the effectiveness of the proposed method in the aspects such as topology rendering and path searching. The evaluation indicates that the proposed model can visualize the distribution network intuitively. The model can also speed up the visualization and path searching significantly.

Related Organizations
Keywords

homeomorphism transformation, Electrical engineering. Electronics. Nuclear engineering, topology formulation, Dimensionality reduction, distribution network, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
gold