Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

System Identification Based ARV-MPPT Technique for PV Systems Under Variable Atmospheric Conditions

Authors: Ahmet Gundogdu;

System Identification Based ARV-MPPT Technique for PV Systems Under Variable Atmospheric Conditions

Abstract

Different tracking algorithms have been developed to obtain maximum efficiency from the PV power systems under changing atmospheric conditions. Some of these algorithms are effective under uniform irradiance, while the others are effective under partial shading conditions. In this study, a new MPPT method designed with System Identification-SI and named SI-based polynomial ARV is proposed for a PV system under uniform irradiance. The recommended method is also an adaptive reference voltage-ARV-based method. In this method, the model in which the reference voltage is obtained has a simple polynomial structure. This polynomial model has been obtained by assuming that the PV system is a nonlinear black-box type system. The input-output data, which are required for modeling, were created in MATLAB/Simulink environment. Then, by using these data with SI-Toolbox, the mathematical model of the PV system in polynomial structure giving the input-output relationship was obtained. T temperature information was used as model input, which was the generated reference voltage. Simulation studies were carried out under two different changing atmospheric scenarios; and the performance of the proposed method was analyzed. The obtained results were compared with perturb & observe-PO, incremental conductance-IC, constant voltage reference-CVR, artificial neural network-ANN-based ARV, and SI-based nonlinear ARV methods. All simulation results showed that the recommended method is simple structured, applicable, and has high performance.

Related Organizations
Keywords

MPPT algorithms, energy management, Energy conversion, renewable energy, TK1-9971, photovoltaic energy, Electrical engineering. Electronics. Nuclear engineering, system identification

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold