
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Real-Time Rule-Based Energy Management Strategy With Multi-Objective Optimization for a Fuel Cell Hybrid Electric Vehicle

Energy management strategy (EMS) has a great impact on securing fuel cell durability, battery charge sustenance, and fuel saving in fuel cell hybrid electric vehicles (FCHEVs). This study aims to develop EMS that can be applied in real-time to satisfy above conditions. Real time power separation was performed using rule-based EMS. A genetic algorithm (GA) was implemented to calculate the optimal battery charge/discharge criterion that simultaneously satisfies the minimum hydrogen consumption rate, battery charge rate preservation, and high fuel cell efficiency. The battery charge/discharge parameter values vary according to driving patterns, and in this paper, typical suburban, urban, and highway driving conditions are considered. For the real-time application of this research method, the effectiveness was demonstrated by applying the driving conditions of unknown patterns. The effect on the initial battery SOC on EMS was analyzed, and in order to verify the superiority of this method, it was compared and analyzed with EMS results using dynamic programming and fuzzy logic under the same driving cycles. The effectiveness of this research method was verified through simulation, and it was confirmed through experiments for real-time application. Since there is a limit to the experiment using an actual fuel cell vehicle, the experiment was performed using a fuel cell and battery. This method can be applied to real fuel cell vehicles in the same way.
- Jiangsu University China (People's Republic of)
- Jiangsu University China (People's Republic of)
- Chungnam National University Korea (Republic of)
- Chonnam National University Korea (Republic of)
fuel cell hybrid electric vehicle, energy management, multi-objective GA, Electrical engineering. Electronics. Nuclear engineering, Battery charge sustenance, hydrogen consumption, TK1-9971
fuel cell hybrid electric vehicle, energy management, multi-objective GA, Electrical engineering. Electronics. Nuclear engineering, Battery charge sustenance, hydrogen consumption, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
