Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Optimal Balanced Energy Harvesting Algorithm for Maximizing Two-Way Relaying D2D Communication Data Rate

Authors: Mahmoud M. Salim; Hussein A. Elsayed; Mohamed Abd Elaziz; Mostafa M. Fouda; Mohamed S. Abdalzaher;

An Optimal Balanced Energy Harvesting Algorithm for Maximizing Two-Way Relaying D2D Communication Data Rate

Abstract

Combining energy harvesting (EH) and device-to-device (D2D) communication underlaying 5G cellular networks is a very promising direction to improve both energy and spectral efficiencies. Unlike conventional relay-aided D2D communication that assumes one-way relaying (OWR) protocols, this paper proposes a two-way relaying (TWR) model. It aims to maximize the TWR D2D link rate that shares the uplink (UL) resources of the conventional cellular user (CU) considering the quality of service (QoS) constraints of all users. Besides, the relays are considered to harvest renewable energy (RE) from the ambient environment by relying on an attached solar panel. Also, they can harvest radio frequency (RF) energy from the received signal based on the power splitting (PS) EH protocol. Assuming that the UL resource allocation (RA) is already performed, the paper’s objective is to jointly optimize the transmission power of all users in addition to the PS factor of relays based on the well-known meta-heuristic algorithm particle swarm optimization (PSO). Also, the best relay is selected by relying on the delimited area (DA) mechanism and the balanced residual energy (BRE) leading to TWR D2D link rate maximization and better energy efficiency (EE). The performance of the proposed algorithm is investigated through the results as well as comparing its performance to two of the most recent relay-aided D2D algorithms.

Keywords

energy harvesting, power splitting, particle swarm optimization, Device-to-device, power allocation, TK1-9971, two-way relaying, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
gold