
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comparative Study of Reinforcement Learning Algorithms for Distribution Network Reconfiguration With Deep Q-Learning-Based Action Sampling

Distribution network reconfiguration (DNR) is one of the most important methods to cope with the increasing electricity demand due to the massive integration of electric vehicles. Most existing DNR methods rely on accurate network parameters and lack scalability and optimality. This study uses model-free reinforcement learning algorithms for training agents to take the best DNR actions in a given distribution system. Five reinforcement algorithms are applied to the DNR problem in 33- and 136-node test systems and their performances are compared: deep Q-learning, dueling deep Q-learning, deep Q-learning with prioritized experience replay, soft actor-critic, and proximal policy optimization. In addition, a new deep Q-learning-based action sampling method is developed to reduce the size of the action space and optimize the loss reduction in the system. Finally, the developed algorithms are compared against the existing methods in literature.
reinforcement learning, proximal policy optimization, Distribution network reconfiguration, TK1-9971, deep Q-learning, Electrical engineering. Electronics. Nuclear engineering, soft actor-critic, data-driven control
reinforcement learning, proximal policy optimization, Distribution network reconfiguration, TK1-9971, deep Q-learning, Electrical engineering. Electronics. Nuclear engineering, soft actor-critic, data-driven control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
