Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Optimal Planning of Virtual Synchronous Generators in Microgrids With Integrated Renewable Energy Sources

Authors: Md. Shadman Abid; Razzaqul Ahshan; Rashid Al-Abri; Abdullah Al-Badi; Mohammed Albadi;

Multi-Objective Optimal Planning of Virtual Synchronous Generators in Microgrids With Integrated Renewable Energy Sources

Abstract

Appropriate renewable distributed generation (RDG) placement is one of the most significant issues for the efficient operation of current power systems. Since the inverter-interfaced RDG lacks rotating mass to sustain the system’s inertia, microgrids have low total system inertia, which impairs frequency stability and can yield significant frequency and voltage instability in severe disruptions. The virtual synchronous generator (VSG), which uses concepts that regulate the inverter to simulate a conventional synchronous generator, is one of the most promising solutions to address these challenges. Hence, this research proposes a unique technique of simultaneous optimal solution for RDG and VSG sizing and placement in distribution networks using a recent metaheuristic technique called the Multi-objective Salp Swarm Optimization Algorithm (MOSSA). The objective function was to minimize the frequency deviation and maximize the total annual energy savings and operational costs of the RDG and VSG units. This study assesses IEEE 33 bus, 69 bus distribution network, and practical Masirah network as the test systems. Moreover, the MOSSA Pareto fronts are superior to two recent metaheuristics employed in this research domain: Multi-objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The results demonstrate that the MOSSA Pareto fronts satisfied the frequency and energy-saving objectives. In addition, all Pareto fronts accurately prevented voltage limit infringements, and the overall energy losses were significantly reduced.

Keywords

multi-objective algorithm, distributed generation, Virtual synchronous generator, Electrical engineering. Electronics. Nuclear engineering, optimization, renewable energy, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research