
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A General Equilibrium Analysis of Predefined-Time Control and Energy Consumption for Neural Networks With Time-Varying Delays

This paper mainly focuses on the equilibrium problem of predefined-time stability and control energy consumption in nonlinear neural networks with time-varying delays. A new criterion for one global composite switching controller to assure predefined-time stability is provided by employing inequality technologies and Lyapunov stability theorem. Under the constructed controller, it is proved that the system is predefined-time stable when the initial conditions are inside and outside the unit sphere. Then, the energy consumption required for the system to reach the control target is estimated, which is related to the preset control time. Moreover, the equilibrium problem of the control energy consumption and the settling time is investigated by constructing an evaluation index function, and the optimal preset control time is obtained. The results show that a suitable preset control time can better balance the energy consumed by the controller, which has practical implications. Finally, a simulation example has clearly verified the theoretical results.
- Suqian University China (People's Republic of)
- Suqian University China (People's Republic of)
- China University of Mining and Technology China (People's Republic of)
- China University of Mining and Technology China (People's Republic of)
delayed neural networks, energy consumption, Equilibrium analysis, Electrical engineering. Electronics. Nuclear engineering, predefined-time stability, TK1-9971
delayed neural networks, energy consumption, Equilibrium analysis, Electrical engineering. Electronics. Nuclear engineering, predefined-time stability, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
