Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Scalable Random Forest-Based Scheme to Detect and Locate Partial Shading in Photovoltaic Systems

Authors: Zain Mustafa; Maher A. Azzouz; Ahmed S. A. Awad; Ahmed Azab; Mostafa F. Shaaban;

A Scalable Random Forest-Based Scheme to Detect and Locate Partial Shading in Photovoltaic Systems

Abstract

Photovoltaic (PV) systems are prone to partial shading (PS) due to the environmental factors that they function in such as vegetation, nearby structures, and clouds. All types of PS scenarios can lead to power loss and hot spots in the PV system due to module mismatch and heating of shaded cells. To mitigate the power loss that occurs due to PS, it is imperative to detect PS and its characteristics, such as the number of shaded modules and the associated shading factor (SF), in a reliable manner. This paper proposes a three-step framework to detect and locate PS, the number of shaded modules, and the SF in the PV system using a random forest (RF)-based approach. The proposed approach utilizes independent string current and voltage measurements to distinguish different PS scenarios. This approach allows for a scalable data acquisition through an uncoupled modeling scheme. PS, the number of shaded modules and the SF are deduced with accuracies of 99.5%, 92.3%, 90.2%, respectively. Further, the proposed approach is validated through two testing tiers, and its ability to detect multiple PS scenarios in a PV system has been highlighted. The results observed through different PS scenarios confirm the high reliability and demonstrate the effectiveness and scalability of the proposed RF-based approach.

Keywords

partial shading, Electrical engineering. Electronics. Nuclear engineering, maximum power point tracking, random forest, Photovoltaic faults, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold