
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Dense Optical Flow Estimation Using Sparse Regularizers From Reduced Measurements

handle: 10754/697907
Optical flow is the pattern of apparent motion of objects in a scene. The computation of optical flow is a critical component in numerous computer vision tasks such as object detection, visual object tracking, and activity recognition. Despite a lot of research, efficiently managing abrupt changes in motion remains a challenge in motion estimation. This paper proposes novel variational regularization methods to address this problem since they allow combining different mathematical concepts into a joint energy minimization framework. In this work, we incorporate concepts from signal sparsity into variational regularization for motion estimation. The proposed regularization uses a robust l1 norm, which promotes sparsity and handles motion discontinuities. By using this regularization, we promote the sparsity of the optical flow gradient. This sparsity helps recover a signal even with just a few measurements. We explore recovering optical flow from a limited set of linear measurements using this regularizer. Our findings show that leveraging the sparsity of the derivatives of optical flow reduces computational complexity and memory needs.
Comment: 12 pages, 9 figures, and 3 tables
- King Abdullah University of Science and Technology Saudi Arabia
- University of Lahore Pakistan
- Hamad bin Khalifa University Qatar
- University of Wollongong Australia
- University of Doha for Science and Technology Qatar
Energy minimization, optical flow, total variation, motion discontinuities, Electrical engineering. Electronics. Nuclear engineering, Electrical Engineering and Systems Science - Signal Processing, sparse regularizers, 004, TK1-9971
Energy minimization, optical flow, total variation, motion discontinuities, Electrical engineering. Electronics. Nuclear engineering, Electrical Engineering and Systems Science - Signal Processing, sparse regularizers, 004, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
