Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory

Authors: Mohammad Reza Chalak Qazani; Navid Aslfattahi; Vladimir Kulish; Houshyar Asadi; Michal Schmirler; Muhammad Zakarya; Roohallah Alizadehsani; +2 Authors

Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory

Abstract

Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids ( $c_{pNF}$ ) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the $c_{pNF}$ based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the $c_{pNF}$ based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the $c_{pNF}$ . In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the $c_{pNF}$ based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the $c_{pNF}$ by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.

Keywords

deep learning, TK1-9971, Nanofluids, machine learning, specific heat capacity, Electrical engineering. Electronics. Nuclear engineering, MXene, Bayesian optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold