Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparing the Role of Long Duration Energy Storage Technologies for Zero-Carbon Electricity Systems

Authors: Sara Ashfaq; Ilyass El Myasse; Daming Zhang; Ahmed S. Musleh; Boyu Liu; Ahmad A. Telba; Usama Khaled; +1 Authors

Comparing the Role of Long Duration Energy Storage Technologies for Zero-Carbon Electricity Systems

Abstract

The successful integration of renewable energy resources into the power grid hinges on the development of energy storage technologies that are both cost-effective and reliable. These storage technologies, capable of storing energy for durations longer than 10 hours, play a crucial role in mitigating the variability inherent in wind and solar-dominant power systems. To shed light on this matter, a transparent, least-cost macro energy model with user-defined constraints has been utilized for a case study of California. The model addresses all included technologies, solving for both hourly dispatch and installed capacities. Real-world historical demand and hourly weather data have been utilized to do this analysis. A novel approach has been introduced to assess the significance of long-duration energy storage technologies (LDS) in terms of their energy and power capacity. This method explores the contributions of pumped hydropower storage (PHS), compressed air energy storage (CAES), and power-to-gas-to-power (PGP) storage toward minimizing the overall balance of system cost. Historical electricity demand, hourly weather data, and current technology costs are used to investigate high-level implications for California’s power system options. Increasing the storage capacity of each technology from 1 to 10 hours results in 29.6%, 14.4%, and 7.5% cost reduction for PHS, CAES, and PGP cases respectively. However, in studied simulations, maximum availability (maximum) of pumped hydropower storage reduces the balance of system costs by 72.3% followed by CAES (60.6%) and PGP (48.6%) and suggests that pumped hydropower storage in combination with CAES/PGP could play an important role in California’s electricity system, provided that suitable sites can be identified and constructed at reasonable costs.

Keywords

solar power, macro-energy modeling, wind power, long-duration energy storage, TK1-9971, 100% renewable electricity, Electrical engineering. Electronics. Nuclear engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
gold