
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Design and Optimization of a Bridgeless Rotor for Synchronous Reluctance Machines

A bridgeless rotor of a synchronous reluctance machine is proposed to enhance the performance of high-power and -speed synchronous reluctance machines (SynRMs). Unlike traditional transversally laminated designs that rely on radial and tangential ribs or bridges to provide mechanical integrity for the rotor, the suggested rotor incorporates separate flux guides attached to non-magnetic back plates to form SynRM rotor modules that are stacked on the shaft of the machine. This innovative structure eliminates the need for radial and tangential bridges which form a performance-deteriorating bottleneck in the design of high-power SynRMs. The paper presents a detailed analysis of the electromagnetic and mechanical aspects of the proposed bridgeless rotor synchronous reluctance machine (BLRSynRM). Furthermore, a comprehensive optimization method is implemented to demonstrate the capabilities of the proposed BLRSynRM along with comparison with conventional transversally laminated SynRM. The results show a significant increase in torque and power factor compared with conventional structure rotor. However, the proposed bridgeless structure introduces new electromagnetic and mechanical challenges to machine design and they are explained and overcome in this research.
bridgeless rotor, high power, TK1-9971, Synchronous reluctance machine, multi objective optimization, high speed, Electrical engineering. Electronics. Nuclear engineering
bridgeless rotor, high power, TK1-9971, Synchronous reluctance machine, multi objective optimization, high speed, Electrical engineering. Electronics. Nuclear engineering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
