Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Extensive Overview of Inductive Charging Technologies for Stationary and In-Motion Electric Vehicles

Authors: Marwa M. Ahmed; Mohamed A. Enany; Ahmed A. Shaier; Haneen M. Bawayan; Shimaa A Hussien;

An Extensive Overview of Inductive Charging Technologies for Stationary and In-Motion Electric Vehicles

Abstract

The wireless power transfer (WPT) system holds potential as a viable solution for charging electric vehicles (EVs) owing to its benefits including safety, automated operation, efficiency, and simplicity. Among the WPT technologies, inductive power transfer (IPT) stands out as particularly well-suited for charging EV batteries. This is primarily due to its capability to transmit high power across considerable air gap distances, accommodating the ground clearance requirements of most EVs, operating automatically without driver involvement, ensuring safety and convenience even in challenging conditions such as snow, rain, and dust, and offering maintenance-free operation by eliminating the need for plug-in connections. This manuscript provides a comprehensive exploration and analysis of the progress made in IPT technology. The manuscript introduces the operational principle of the IPT system and highlights the benefits of its components. Additionally, it discusses the transmitter and receiver architectures, outlines the characteristics of various charging pads, in case of both stationary and in-motion charging scenarios. Furthermore, it delves into different compensation circuit topologies and various WPT designs based on compensating structures associated with the IPT system. It also categorizes the converter topologies utilized in the system and presents the operating technique for each one. In addition, the ongoing research and development (R&D) endeavors pertaining to each technology are discussed, addressing challenges, existing gaps, and offering recommendations for further advancements in both stationary and in-motion charging applications.

Keywords

IPT technology, challenges, Review, compensation networks, TK1-9971, R&D activities, Electrical engineering. Electronics. Nuclear engineering, control

Powered by OpenAIRE graph
Found an issue? Give us feedback