Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving FDI Detection for PMU State Estimation Using Adversarial Interventions and Deep Auto-Encoder

Authors: Saleh Almasabi; Zohaib Mushtaq; Nabeel Ahmed Khan; Muhammad Irfan;

Improving FDI Detection for PMU State Estimation Using Adversarial Interventions and Deep Auto-Encoder

Abstract

Concerns have been voiced about the growing significance of cyber-threats, especially in light of the potentially dire repercussions of false data injection (FDI) assaults. This work investigates FDI detection in phasor measurement units (PMU), focusing on instances where an attack can be launched simply by compromising one unit. Simulated post-processing adversarial interventions i.e., noise and non-linearity were introduced to train and fortify the system against possible attacks and to render it resilient to perturbations. By learning complex non-linear patterns from the data, a deep de-noising auto-encoder model is used to de-noise and learn genuine feature representations, improving overall reliability. The suggested framework performs better than conventional machine learning and 1-D CNN models when it comes to precisely estimating intrusion, as shown by a comparison study. By using an integrated strategy, power system monitoring and control become more accurate and resilient, successfully tackling the changing issues faced by contemporary electrical grids. The proposed adversarially robust framework is evaluated using Monte-Carlos simulations and on varying load conditions to better comprehend the impact of adversarial interventions on the FDI detection accuracy under different load characteristics and attack scenarios. The proposed framework yielded an average 98.3% in Monte Carlo simulations and an average of 96.5% accuracy under varying load conditions. Surpassing the conventional ML and 1-D CNN algorithms in successfully identifying FDI attacks under adversarial vulnerability.

Keywords

intrusion, smart grids, adversarial interventions, phasor measurement units, False data injections, Electrical engineering. Electronics. Nuclear engineering, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold