
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Three-Stage Optimization Model to Inform Risk-Averse Investment in Power System Resilience to Winter Storms

We propose a three-stage stochastic programming model to inform risk-averse investment in power system resilience to winter storms. The first stage pertains to long-term investment in generator winterization and mobile battery energy storage system (MBESS) resources, the second stage to MBESS deployment prior to an imminent storm, and the third stage to operational response. Serving as a forecast update, an imminent winter storm’s severity is assumed to be known at the time the deployment decisions are made. We incorporate conditional value-at-risk (CVaR) as the risk measure in the objective function to target loss, represented in our model by unserved energy, experienced during high-impact, low-frequency events. We apply the model to a Texas-focused case study based on the ACTIVS 2000-bus synthetic grid with winter storm scenarios generated using historical Winter Storm Uri data. Results demonstrate how the optimal investments are affected by parameters like cost and risk aversion, and also how effectively using CVaR as a risk measure mitigates the outcomes in the tail of the loss distribution over the winter storm impact uncertainty.
- Los Alamos National Laboratory United States
- The University of Texas at Austin United States
- Sandia National Laboratories United States
- Sandia National Laboratories United States
generator winterization, Battery energy storage, Electrical engineering. Electronics. Nuclear engineering, contingency, power grid, optimization, resilience, TK1-9971
generator winterization, Battery energy storage, Electrical engineering. Electronics. Nuclear engineering, contingency, power grid, optimization, resilience, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
