Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improving Reliability and Stability of the Power Systems: A Comprehensive Review on the Role of Energy Storage Systems to Enhance Flexibility

Authors: Muhammad Muzammal Islam; Tianyou Yu; Giovanni Giannoccaro; Yang Mi; Massimo la Scala; Mohammad Rajabi Nasab; Jie Wang;

Improving Reliability and Stability of the Power Systems: A Comprehensive Review on the Role of Energy Storage Systems to Enhance Flexibility

Abstract

The rising demand for green energy to reduce carbon emissions is accelerating the integration of renewable energy sources (RESs) like wind and solar power. However, this shift presents significant challenges due to the inherent variability and intermittency of RESs, which impact power system stability and reliability. As a result, there is a growing need for enhanced flexibility to maintain stable and reliable operations. This study reviews recent advancements in power system flexibility enhancement, particularly concerning the integration of RESs, with a focus on the critical role of energy storage systems (ESSs) in mitigating these challenges. ESSs play a vital role in addressing the variability of RESs, supporting grid stability, and enabling energy consumption time shifting. While existing studies discuss power system flexibility, each typically addresses specific aspects. This comprehensive review evaluates flexibility measures for renewable-based electricity in terms of reliability and stability, highlighting the importance of ESSs in transmission, distribution networks, and end-user applications like residential buildings and vehicle-to-grid technologies to enhance overall system flexibility. Additionally, we identify recent challenges, such as the increased risk of grid congestion, frequency deviations, and the need for real-time supply and demand balancing, which necessitate innovative ESS applications. We propose future directions, including a transition pathway to promote the large-scale deployment of diverse ESS technologies to support grid modernization, enhance resilience, and foster sustainable power supply development. Our findings emphasize the growing research into optimizing power system stability and reliability, offering valuable guidance for future research and practical implementation.

Country
Italy
Keywords

reliability, microgrids, energy storage system, ancillary services; end-user applications; energy storage system; microgrids; Power system flexibility; reliability; renewable energy; stability, end-user applications, Electrical engineering. Electronics. Nuclear engineering, stability, ancillary services, renewable energy, Power system flexibility, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold
Related to Research communities
Energy Research