Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Machine Learning Pipeline for Energy and Environmental Prediction in Cold Storage Facilities

Authors: Nasser Alkhulaifi; Alexander L. Bowler; Direnc Pekaslan; Gulcan Serdaroglu; Steve Closs; Nicholas J. Watson; Isaac Triguero;

Machine Learning Pipeline for Energy and Environmental Prediction in Cold Storage Facilities

Abstract

As energy demands and costs rise, enhancing energy efficiency in Food and Drink Cold Storage (FDCS) rooms is important for reducing expenses and achieving environmental sustainability ambitions. Forecasting electricity use in FDCSs can help optimise operations and minimise energy consumption by enabling door opening frequency, maintenance, and restocking to be better scheduled. Although Machine Learning (ML) has been applied to forecast energy use in various domains such as commercial and residential buildings, its use in addressing the specific challenges of FDCS, which require stringent temperature and humidity control for food safety and quality, has been less explored. This work addresses this gap by proposing a tailored ML pipeline for FDCS settings capable of predicting one-week into the future and is suitable for small dataset sizes. It provides comparative analysis by employing two distinct real-world FDCS datasets for training, validation, and testing of the developed models. Moreover, in contrast to existing studies predominantly concerned with energy consumption prediction, this study includes the forecasting of indoor temperature and humidity, given their essential role in preserving the quality and longevity of stored food items. Ensemble-based methods, particularly Random Forest, excelled and achieved the lowest electricity MAEs of 150.65 and 384.88 for each dataset, respectively.

Country
Spain
Related Organizations
Keywords

feature engineering, Food and Drink Cold Storage Rooms, machine learning, Energy forecasting, Electrical engineering. Electronics. Nuclear engineering, sustainability, Energy Forecasting, food and drink cold storage rooms, Feature Engineering, TK1-9971

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities
Energy Research