
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimizing Security in IoT Ecosystems Using Hybrid Artificial Intelligence and Blockchain Models: A Scalable and Efficient Approach for Threat Detection

The exponential growth of the Internet of Things (IoT) has boosted connectivity across various sectors, such as Industry 4.0 and smart cities. However, this expansion has also exposed IoT devices to critical vulnerabilities, including spoofing, DoS attacks, and unauthorized access. Traditional security solutions, based on centralized architectures, are neither scalable nor efficient enough to handle the increasing complexity and number of IoT devices, leading to high latencies, increased energy consumption, and inadequate intrusion detection. In this work, we propose a hybrid solution that combines Blockchain and artificial intelligence (AI) to improve security and operational efficiency in IoT networks. Blockchain ensures device authentication and data integrity through a lightweight consensus protocol, while AI enables real-time intrusion detection using deep learning models. The simulations demonstrate that the proposed system improves the precision of detecting phishing attacks by up to 95.2%. At the same time, the authentication latency is reduced to 15 ms in networks with 1000 connected devices, 66.6% faster than traditional solutions. In addition, the energy consumption of the hybrid system is 31.8% lower than that of conventional approaches, validating its scalability and efficiency in large-scale IoT networks.
- Universidad de Las Américas Ecuador
- Universidad de Las Américas Ecuador
- Universidad Internacional del Ecuador Ecuador
- Universidad Internacional del Ecuador Ecuador
blockchain, Artificial intelligence, IoT security, Electrical engineering. Electronics. Nuclear engineering, hybrid systems, anomaly detection, energy efficiency, TK1-9971
blockchain, Artificial intelligence, IoT security, Electrical engineering. Electronics. Nuclear engineering, hybrid systems, anomaly detection, energy efficiency, TK1-9971
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
