Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://upcommons.up...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://upcommons.upc.edu/bits...
Conference object
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Recolector de Ciencia Abierta, RECOLECTA
Conference object . 2019 . Peer-reviewed
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UPCommons. Portal del coneixement obert de la UPC
Conference object . 2019 . Peer-reviewed
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/ccac.2...
Conference object . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
Digital.CSIC
Conference object . 2019
Data sources: Digital.CSIC
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Consumption Dynamical Models for Smart Factories Based on Subspace Identification Methods

Authors: Bermeo Ayerbe, Miguel Ángel; Ocampo-Martínez, Carlos;

Energy Consumption Dynamical Models for Smart Factories Based on Subspace Identification Methods

Abstract

Trabajo presentado en el 4th Colombian Conference on Automatic Control (CCAC), celebrado en Medellín (Colombia), del 15 al 18 de octubre de 2019 Given the need of implementing methodologies in industry for the reduction of the energy consumption costs, it is required to create modelling methodologies that, together with the use of new technologies, will allow identifying energy consumption models based on input-output data. These models will later be used to design a suitable model-based control strategy. In this paper, a subspace identification algorithm based on the RQ decomposition approach has been reported, which is both implemented and validated on a test-bench that emulates the energy consumption of an industrial machine within a manufacturing process. Subsequently, the resultant model fitting when using the proposed modelling methodology has been compared with different identification routines included into the MATLAB System Identification Toolbox¿, showing, in general, better results for the proposed methodology in this paper, with up to almost 80% of fitting in some cases. This work has been funded by the project IKERCON (ref. C10683).

Country
Spain
Keywords

:Energies [Àrees temàtiques de la UPC], Modeling, Industrial production systems, RQ decomposition, Energy consumption models, Industry 4.0, Subspace identification, Energy consumption, Àrees temàtiques de la UPC::Energies, Energia -- Consum -- Models matemàtics, Industries, Indústries

Powered by OpenAIRE graph
Found an issue? Give us feedback