Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RE.PUBLIC@POLIMI Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://re.public.polimi.it/bi...
Conference object
Data sources: UnpayWall
https://doi.org/10.1109/cdc.20...
Conference object . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A randomized approach to Stochastic Model Predictive Control

Authors: PRANDINI, MARIA; GARATTI, SIMONE; J. Lygeros;

A randomized approach to Stochastic Model Predictive Control

Abstract

In this paper, we propose a novel randomized approach to Stochastic Model Predictive Control (SMPC) for a linear system affected by a disturbance with unbounded support. As it is common in this setup, we focus on the case where the input/state of the system are subject to probabilistic constraints, i.e., the constraints have to be satisfied for all the disturbance realizations but for a set having probability smaller than a given threshold. This leads to solving at each time t a finite-horizon chance-constrained optimization problem, which is known to be computationally intractable except for few special cases. The key distinguishing feature of our approach is that the solution to this finite-horizon chance-constrained problem is computed by first extracting at random a finite number of disturbance realizations, and then replacing the probabilistic constraints with hard constraints associated with the extracted disturbance realizations only. Despite the apparent naivety of the approach, we show that, if the control policy is suitably parameterized and the number of disturbance realizations is appropriately chosen, then, the obtained solution is guaranteed to satisfy the original probabilistic constraints. Interestingly, the approach does not require any restrictive assumption on the disturbance distribution and has a wide realm of applicability.

Country
Italy
Keywords

AUT

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Green