
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
On-board stochastic control of Electric Vehicle recharging
handle: 11573/536996
This paper deals with the design of an on-board control strategy for Electric Vehicle recharging under the hypothesis of missing knowledge of the future energy price and the presence of vehicle to grid capability. For this purpose the charging session is modeled as a finite horizon Markov Decision Process and the optimal charging policy is computed according to Reinforcement Learning techniques, the learning phase makes use of the revenues received when taking actions in states represented by the current level of charge, the leftover charging time and the last realization of energy price. Simulation results show the effectiveness of the proposed approach with respect to the fulfillment of driver preferences in charging and the diversification of the control action during charging for the exploitation of the vehicle to grid concept.
- Roma Tre University Italy
- Sapienza University of Rome Italy
charging control; electric vehicle; markov decision process
charging control; electric vehicle; markov decision process
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).24 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
