Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MURAL - Maynooth Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://mural.maynoothuniversit...
Conference object
Data sources: UnpayWall
https://doi.org/10.1109/cdc.20...
Conference object . 2015 . Peer-reviewed
Data sources: Crossref
UniSA Research Outputs Repository
Conference object . 2016 . Peer-reviewed
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal sensor transmission energy allocation for linear control over a packet dropping link with energy harvesting

Authors: Knorn, Steffi; Dey, Subhrakanti;

Optimal sensor transmission energy allocation for linear control over a packet dropping link with energy harvesting

Abstract

This paper studies a closed loop linear control system. The sensor computes a state estimate and sends it to the controller/actuator in the receiver block over a randomly fading packet dropping link. The receiver sends an ACK/NACK packet to the transmitter over a link. It is assumed that the transmission energy per packet at the sensor depletes a battery of limited capacity, replenished by an energy harvester. The objective is to design an optimal energy allocation policy and an optimal control policy so that a finite horizon LQG control cost is minimized. It is shown that in case the receiver to sensor feedback channel is free of errors, a separation principle holds. Hence, the optimal LQG controller is linear, the Kalman filter is optimal and the optimal energy allocation policy is obtained via solving a backward dynamic programming equation. In case the feedback channel is erroneous, the separation principle does not hold. In this case, we propose a suboptimal policy where the controller still uses a linear control, and the transmitter minimizes an expected sum of the trace of an “estimated” receiver state estimation error covariance matrix. Simulations are used to illustrate the relative performance of the proposed algorithms and various heuristic algorithms for both the perfect and imperfect feedback cases. It is seen that the dynamic programming based policies outperform the simple heuristic policies by a margin.

Countries
Ireland, Australia
Keywords

energy harvesting, 330, batteries, covariance matrices, wireless communication, 003, 004, transmitters, resource management, receivers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green