
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A review of hybrid evolutionary multiple criteria decision making methods
For real-world problems, the task of decision-makers is to identify a solution that can satisfy a set of performance criteria, which are often in conflict with each other. Multi-objective evolutionary algorithms tend to focus on obtaining a family of solutions that represent the trade-offs between the criteria; however ultimately a single solution must be selected. This need has driven a requirement to incorporate decision-maker preference models into such algorithms - a technique that is very common in the wider field of multiple criteria decision making. This paper reviews techniques which have combined evolutionary multi-objective optimization and multiple criteria decision making. Three classes of hybrid techniques are presented: a posteriori, a priori, and interactive, including methods used to model the decision-makers preferences and example algorithms for each category. To encourage future research directions, a commentary on the remaining issues within this research area is also provided.
- University of Sheffield United Kingdom
- National University of Defense Technology China (People's Republic of)
- Michigan State University United States
- National University of Defense Technology China (People's Republic of)
- Michigan State University United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).102 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
