Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/coase....
Conference object . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-and Expert-Driven Analysis of Cause-Effect Relationships in the Production of Lithium-Ion Batteries

Authors: Christoph Herrmann; Rüdiger Daub; Thomas Komas; Sebastian Thiede; Muhammad Zeeshan Karamat;

Data-and Expert-Driven Analysis of Cause-Effect Relationships in the Production of Lithium-Ion Batteries

Abstract

The development of lithium-ion batteries (LIBs) is characterized by a unique level of complexity in the manufacturing process. In particular, cause-effect relationships (CERs) between process parameters have a strong influence on the quality of a manufactured cell and thus on the ramp-up time. First approaches for discovery CERs in LIBs were expert-based and thus afflicted with a high degree of uncertainty. Therefore, data from a real battery production line has for the first time been systematically processed and analyzed using CRISP-DM. However, the approach shows shortcomings in the involvement of domain expert knowledge as well as in the accuracy of the applied models. Addressing these shortcomings, an interdisciplinary data analytics framework is presented using human-computer interaction (HCI). Moreover, the framework aims to improve data analysis with the help of expert knowledge and, conversely, sharpen the knowledge of experts through data analysis. Thus, the model provides a basis for automated fault detection, diagnostics, and prognostics. Implementation and validation of the framework was conducted using the data of an assembly line for prismatic LIBs at the BMW Group in Munich.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%