
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Enhanced secondary frequency control via distributed peer-to-peer communication
Distributed generation resources have become significantly more prevalent in the electric power system over the past few years. This warrants reconsideration on how the coordination of generation resources is achieved. In this paper, we particularly focus on secondary frequency control and how to enhance it by exploiting peer-to-peer communication among the resources. We design a control framework based on a consensus-plus-global-innovation approach, which guarantees bringing the frequency back to its nominal value. The control signals of the distributed resources are updated in response to a global innovation corresponding to the ACE signal, and additional information exchanged via communication among neighboring resources. We show that such a distributed control scheme can be very well approximated by a PI controller and can stabilize the system. Moreover, since our control scheme takes advantage of both the ACE signal and peer-to-peer communication, simulation results demonstrate that our control scheme can stabilize the system significantly faster than the AGC framework. Also, an important feature of our scheme is that it performs $c��$-close to the centralized optimal economic dispatch, where $c$ is a positive constant depending only on the cost parameters and the communication topology and $��$ denotes the maximum rate of change of overall system.
Submitted for publication
- University of California, Berkeley United States
- Carnegie Mellon University United States
- École Polytechnique Fédérale de Lausanne EPFL Switzerland
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
