
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rotor parameter identification of saturated induction machines
An induction machine model is proposed for the identification of rotor parameters using high-frequency signal injection. The model includes both the magnetic saturation caused by the fundamental-wave components and the frequency dependence encountered in the signal injection method. Both the skin effect in the rotor winding and the eddy current losses in the rotor core are taken into account. Sinusoidal signal injection is used at several frequencies, and the model parameters are fitted to the results. The rotor leakage inductance and the rotor resistance valid at low slip frequencies are also obtained from the model directly. Experimental results for a 45-kW machine are presented. It is shown that the model fits well to the measured data in various operating points, and the accuracy of the identified parameters is good.
- University of Helsinki Finland
- Helsinki University of Technology Finland
- Helsinki University of Technology Finland
Signal processing, Saturation magnetization, Skin effect, Eddy currents, Induction machines, Electrical resistance measurement, Magnetic cores, Frequency dependence, Parameter estimation, Inductance
Signal processing, Saturation magnetization, Skin effect, Eddy currents, Induction machines, Electrical resistance measurement, Magnetic cores, Frequency dependence, Parameter estimation, Inductance
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
