
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
New design alternatives for a hybrid photovoltaic and doubly-fed induction wind plant to augment grid penetration of renewable energy
Reducing carbon emissions is essential to stop climate change. The grid-share of renewable generation plants is increasing, being wind and photovoltaic plants the most common ones, whereas conventional plants are the only ones that provide the necessary services to maintain the grid stability and keep the generation-demand balance. However, with the aim of achieving carbon-neutral generation, conventional plants are being dismantled. This leads to the imminent need of providing these services with renewable plants. Due to this challenge, this proposal analyses a hybrid plant composed by wind and photovoltaic generation with two types of storage, lithium-ion batteries and a thermal storage system based on volcanic stones. In order to compare both strategies, a technoeconomic methodology is explained that allows to optimally size the plant, using the current prices of each technology. The most cost-competitive proposal turns to be the hybrid plant with thermal storage, composed by 623.9 MW installed power and 21.9 GWh of storage, which could replace a 100 MW, 24/7 conventional power plant, with an LCOHS (levelized cost of hybrid system) of 118.38 €/MWh, providing identical grid services and an equivalent inertia in a way committed with the environment. This is in turn a zero-carbon emissions solution perfectly matched to a second life plan for a conventional power plant. This work has been supported by Siemens Gamesa Renewable Energy, by the Spanish State Research Agency (AEI/ 10.13039/501100011033) under grants PID2019-111262RB-I00 and PID2019-110956RB-I00, and by the Public University of Navarra under project ReBMS PJUPNA1904.
- Siemens (Germany) Germany
- Universidad Publica De Navarra Spain
- Siemens (Spain) Spain
- Siemens (Germany) Germany
- Universidad Publica De Navarra Spain
Power grid, Lithium-ion battery, Thermal storage, DFIG, Second life, Hybridization, Photovoltaic, Carbon-neutral
Power grid, Lithium-ion battery, Thermal storage, DFIG, Second life, Hybridization, Photovoltaic, Carbon-neutral
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
