Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repertorio Competenz...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Repertorio Competenze e Ricerche
Part of book or chapter of book . 2019
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/eeeic....
Conference object . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Objective Building Envelope Optimization through a Life Cycle Assessment Approach

Authors: Cellura, M; Longo, S; Montana, F; Riva Sanseverino, E;

Multi-Objective Building Envelope Optimization through a Life Cycle Assessment Approach

Abstract

This work describes a methodology for the identification of the optimal features for the envelope of a residential building. The optimization process allows minimizing operating energy consumption, investment costs and life cycle energy and environmental embodied impacts. A dynamic model for the estimation of building energy consumption during its use phase has been employed, while literature data were adopted for embodied energy and global warming potential impacts. The considered variables refer to the envelope of the building, i.e. external walls and roof insulation and external walls thermal mass. The model was obtained combining EnergyPlus building energy simulator and MOBO, a versatile freeware that allows running the optimization of building features. The optimization was solved using NSGA II, a widespread adopted multi-objective genetic algorithm available in MOBO. The same building was simulated in two different climatic zones, namely Palermo (Italy) and Copenhagen (Denmark), in order to compare differences attained in the optimal solutions. The case study shows that the adoption of glass wool for the roof insulation and small concrete layers for external walls are to be preferred, providing optimal results in both climates. The present work was developed within the framework of IEA EBC Annex 72.

Related Organizations
Keywords

Settore ING-IND/11 - Fisica Tecnica Ambientale, air conditioning, buildings, multi-objective programming, genetic algorithms, Settore ING-IND/33 - Sistemi Elettrici Per L'Energia, life cycle, air conditioning,buildings,genetic algorithms,life cycle,multi-objective programming

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green