

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Electricity demand profile prediction based on household characteristics
handle: 10400.21/9506
This work proposes a methodology for predicting the typical daily load profile of electricity usage based on static data obtained from surveys. The methodology intends to: (1) determine consumer segments based on the metering data using the k-means clustering algorithm, (2) correlate survey data to the segments, and (3) develop statistical and machine learning classification models to predict the demand profile of the consumers. The developed classification models contribute to make the study and planning of demand side management programs easier, provide means for studying the impact of alternative tariff setting methods and generate useful knowledge for policy makers.
- Instituto Politécnico de Lisboa Portugal
- University of Lisbon Portugal
- Instituto Superior de Espinho Portugal
- Instituto Politécnico de Lisboa Portugal
- University of Évora Portugal
Smart meter data, Household energy consumption, Segmentation, Machine learning, Data mining
Smart meter data, Household energy consumption, Segmentation, Machine learning, Data mining
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).25 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 28 download downloads 4 - 28views4downloads
Data source Views Downloads Repositório Científico do Instituto Politécnico de Lisboa 28 4


