Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multi-Agent platform for Grid and communication impact analysis of rapidly deployed demand response algorithms

Authors: Nicholas Honeth; Lars Nordström; Sandro Iacovella; Geert Deconinck; Pieter Vingerhoets;

Multi-Agent platform for Grid and communication impact analysis of rapidly deployed demand response algorithms

Abstract

This paper describes a rapid algorithm deployment platform for Smart Grid research. Accounting for the complex interplay of power system dynamics and communication delays in the network by means of rapid code deployment during algorithm design can improve the evaluation of Smart Grid control schemes and their impact on grid power quality. Our novel approach bridges the gap between the implementation of highly realistic multi-timeframe simulations, and expensive hardwired deployment. The architecture and behavior of the platform is presented for one specific Demand Response algorithm namely Dual Decomposition. Large numbers of distributed agents are efficiently managed by employing FIPA compliant Agent Management Specification (AMS) and Directory Facilitator (DF) functionalities, as well as an efficient SQL database monitoring and logging scheme. The architecture is deployed both on an actual laboratory setup and a virtual OPAL-RT environment. Simulations results show that system latency and computational load increase linearly for increasing numbers of distributed agents. This novel approach provides a realistic and pragmatic solution for evaluating distributed applications for grid management, market applications and advanced monitoring of power quality requirements.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average