
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelica implementation of phase change material ventilation unit
An open source Modelica package for a specific type of Phase Change Material (PCM) ventilation unit is developed. The model is built as a part of the Termonet library of components from Modelica Standard Library (MSL) and International Building Performance Simulation Association (IBPSA) library aiming at open source models for households and utility companies to help to integrate sustainable technologies into district energy networks. The PCM heat exchanger model instantiating IBPSA library fluid components is compared to the MSL PCM implementation with no fluid components and Matlab-inspired textual Modelica model. MSL-based and textual models are shown to produce identical results, whereas an account of fluid properties leads only to a slight deviation. This can motivate the use of the MSL and IBPSA-based models as control and emulator models in model predictive control applications. Essential fluid models from IBPSA library can be compiled and simulated using OpenModelica with minimal tuning, which shows the potential of the IBPSA library as a fully open source building performance simulation tool.
- University of Southern Denmark Denmark
Sustainable energy, Latent heat storage, HVAC, latent heat storage, OpenModelica, sustainable energy, phase change material, Phase change material
Sustainable energy, Latent heat storage, HVAC, latent heat storage, OpenModelica, sustainable energy, phase change material, Phase change material
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
