Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Conference object . 2012
Data sources: CNR ExploRA
https://doi.org/10.1109/esars....
Conference object . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Charging infrastructures for EV: Overview of technologies and issues

Authors: Diego Iannuzzi; Clemente Capasso; Ottorino Veneri; L. Ferraro;

Charging infrastructures for EV: Overview of technologies and issues

Abstract

This paper presents an overview of issues and technologies related to the proper design of charging infrastructures for road electric vehicles. The analysis is carried out taking into account that the recharging stations of electric vehicles might be integrated in smart grids, which interconnect the main grid with distributed power plants, different kinds of renewable energy sources, stationary electrical storage systems and electric loads. The study is introduced by an analysis of the main characteristics concerning different kinds of storage systems to be used for stationary and on-board applications. Then, different charging devices, modes and architectures are presented and described showing their characteristics and potentialities. DC and AC configurations of charging stations are compared in terms of the issues related to their impact on the main grid and the design of their main components. Specific attention was devoted also to the ultra-fast DC architecture, which appears a possible solution to positively affect a wide spread of plug-in hybrid and full electric road vehicles.

Country
Italy
Keywords

Hybrid Vehicles, Vehicle to Grid., Energy Storage, Electric Vehicles, Recharging Stations

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%